

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE

FACULTY: BASIC AND APPLIED SCIENCES

DEPARTMENT: MATHEMATICS AND COMPUTER SCIENCE

2nd SEMESTER EXAMINATIONS

2013 / 2014 ACADEMIC SESSION

COURSE CODE: MATH 102

COURSE TITLE: General Matnematics II

COURSE LEADER: Dr. Babatunde Omolofe / Mrs Akinwumi

DURATION: 2 Hours

HOD's SIGNATURE

INSTRUCTION:

- 1. YOU ARE TO ANSWER THREE QUESTIONS FROM THE FIVE QUESTIONS ON THE EXAMINATION PAPER.
- 2. CALCULATORS ARE NOT PERMITTED FOR THIS EXAMINATION

Question One

- a. i. Let f and g be the mapping defined on the set of real numbers defined by f(x) = x + 1 and $g(x) = \sqrt{x}$ find $f \circ g$ and $g \circ f$ 2 marks
 - ii. Find the limiting value of $\frac{2x^3-5x^2+3x+2}{7x^3+2x^2-5x+7}$ as x approaches infinity

2marks

iii. The curve $y = ax^2 + bx + 5$ where a and b are constants has a turning point at the point p(1,3). Find the values of a and b and determine whether p is a maximum or a minimum point.

5marks

- b i. when do we say a function f(x) is continuous. 3marks
 - ii. Investigate the continuity of the function $f(x) = 3x^2 + 2x 1$

4marks

iii. Find the point of discontinuity of the function $f(x) = \frac{x^2 - 25}{x - 5}$ and remove the discontinuity.

4marks

Question Two

a Compute the derivative of $y = \cos x$ from the first principle.

5marks

b i. Find the differential coefficient of $y = \tan \theta$ 4marks

ii. If
$$y = \frac{t}{1+t^2}$$
, $x = \frac{t^3}{1+t^2}$, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ 8 marks

c If $y^2 + 5xy + 2x^2 - x^2y = 9$ Find the derivative of y with respect to x. 3marks

Question Three

a i. Find
$$\frac{dy}{dx}$$
 if $y = \sin^{-1}\left(\frac{1-x}{1+x}\right)$ 7marks

- A particle is projected in a straight line from a point O with a speed of $6ms^{-1}$. At time t s (seconds) later, its acceleration is $(1+2t)ms^{-2}$. For the time when t = 4, calculate for the particle
 - i. its velocity

3marks

ii. its distance from O.

3marks

Find the stationary points on the curve $y = x^3 - 6x^2 + 12x - 8$ and distinguish between them.

7 marks

Question Four

- a. Evaluate (i) $\int \frac{3x}{\sqrt{x^2+1}} dx$ (ii) $\int \frac{12x+14}{3x^2+7x} dx$ 8marks
- b. A particle starts from rest at the origin and moves along the x-axis. The acceleration of the particle after time t is given by $\frac{d^2x}{dt^2} = 12t^2 60t + 32 \text{ find an expression for x at time t. Hence find the times at which the particle again passes through the origin.}$

7marks

c. Evaluate $\int \frac{dx}{\sqrt{(3+x)(3-x)}}$ 5marks

Question Five

- a. Given that $\frac{d^2y}{dx^2} = 3\sin x$ and that when x = 0, $\frac{dy}{dx} = -3$ and y = 0, find y in terms of x. Hence show that $\frac{d^2y}{dx^2} + y = 0$ 9 marks
- b. Integrate $\int \frac{4x+3}{(x-3)(x+2)} dx$ 7marks
- c. The point on the curve xy = 8 from x = 2 to x = 4 is rotated about x-axis, find the volume generated.

 4marks